

Research activities of Inria Environment, sustainable development & energy

Jacques Sainte-Marie
Deputy director for science of Inria

Inria - Nancy - June 2020

Outline

Overview of research activities

- ★ Many contributions
- **★** Strong growth
- ★ Few highlights

Strategy

- ★ Sustainable development implies profound changes
- * Research & « all activities »
- ★ Organization / incentive actions
- ★ Available means
- ★ Lean ICT

A cartography of Inria contributions (by Peter Sturm - 2019) +84 project-teams implied

- Carbon footprint reduction of ICT
 - ✓ Reduction of energy consumption
 - ✓ Better usage, recyclability
 - ✓Optimizing technologies
- Understanding/modeling environment
 - ✓Ocean, atmosphere, climate, weather
 - ✓ Ecology, ecosystems, biodiversity
 - ✓ Decontamination
- « Smart » mobility/cities/agriculture
- Energy: production/distribution/storage
 - ✓ Renewable energies, nuclear fusion/fission
 - √Consumption patterns/monitoring

• . . .

Carbon footprint reduction of ICT

- measuring and analyzing energy consumption of various computing architectures, AVALON
- increase energy efficiency of computing architectures, AVALON
- reducing energy consumption of internet service provider networks, COATI
- compiling to reduce energy consumption of applications, CORSE
- prediction of the energy consumption of a chip, EVA
- low-power Internet of Things, INFINE
- performance analysis of a data center by renewable energy ressources, NEO
- zero Power Computing Systems, PACAP, SOCRATE
- energy proportional networks, PANAMA
- clouds, distributed systems
 - * optimizing energy management in distributed clouds, MYRIADS
 - * energy cost models for heterogeneous cloud infrastructures and for energy distribution grids, MYRIADS
 - * exploiting renewable energy in clouds, MYRIADS

- energy-aware algorithms and scheduling strategies, ROMA
- measuring and optimizing the energy footprint of ICT software infrastructures, SPIRALS
- IoT, sensor networks
 - * improving energy efficiency for wireless sensor networks and distributed computing, CAIRN
 - * energy-efficient mechanisms in low-power wireless networks, EVA
 - * energy-aware routing for IoT for smart grids, FUN
- HPC, supercomputing
 - * improving energy efficiency of HPC, CAMUS, CTRL-A, DATAMOVE
 - * energy-efficient heterogeneous supercomputing architectures, PACAP
 - * energy-efficient HPC and data storage, KERDATA
- Better usage of materials, including recyclability/ reparability by design, less dispersive usage of materials
 - * nothing (for the moment)

Highlight 1

Lean ICT

Taking into account energy consumption in the design of new algorithms, architectures & langages:

- High-performance and energy-efficient neural networks
- Learning memory and energy efficient dictionaries

TOTH, PANAMA, ROMA, ALPINES

- HPC: fast and stable numerical schemes, <u>high order ?</u>
- Deep neural network & numerical analysis
- Compiler optimizations
- Parallelization
- Micro-architectural features
- GPU, many-cores, FPGA
- Also energy efficient embedded systems

CASH, CORSE, PACAP

SPADES, CAIRN

Carbon footprint reduction (other techno.)

- Optimizing technologies to lower energy consumption
 - * Vehicles
 - ✓ modeling and optimization for active flow control technologies to improve aerodynamic performance of cars, ACUMES
 - ✓ experimental fluid mechanics to limit aircraft fuel consumption, FLUMINANCE
 - ✓ optimizing aircraft trajectories for reduction of fuel consumption, COMMANDS
 - * Buildings, cities
 - √ tools for assessing thermal performance of buildings, I4S
 - ✓ resource consumption analysis for optimizing energy consumption in industrial factories, LACODAM
 - ✓ optimization for building design (including reduction of environmental impact), ACUMES
- Better usage of materials, including recyclability/reparability by design, modularity, less dispersive usage of materials
 - * Sustainable use of resources in construction, SERENA

« Smart » mobility

- * modeling and control of road traffic, among which control of autonomous vehicles, ACUMES
- * networking for mobility: dynamic car-pooling combined with multi-modal transportation systems, COATI
- * modeling of road traffic (traffic jams), COFFEE, ACUMES, RITS
- * computing optimal multi-modal itineraries in cities, including car pools, GANG
- * road traffic modeling for energy management of hybrid vehicles (with IFPEN), COMMANDS
- * dynamical distribution of network control to enable message dissemination in Intelligent Transport Systems, DIANA
- * energy trade-offs for end-to-end communications in urban vehicular networks, DYOGENE
- * machine learning and data mining to study traffic congestion, parking, ride-sharing, pollution and energy consumption, MAGNET
- * ad hoc networks for (autonomous) vehicles, EVA, FUN

- * vehicle routing, INOCS
- * traffic control, NECS
- * optimization for electric car-sharing systems, INOCS
- * IoT for connected vehicles, KAIROS
- * calibration of sensors for autonomous cars, MISTIS
- * validation of safety properties for automated transport systems, MEXICO
- * critical infrastructure operation, such as public transportation systems and power distribution networks, ILDA
- * autonomous vehicles, RAPSODI
- * car sharing, RAPSODI
- * autonomous car control and path planning, SEQUEL
- * validating the safety of autonomous vehicles, TAU
- * integrated models for transportation and land use, STEEP

« Smart » cities/agriculture

- Cities and homes
 - * wireless networks for smart cities, e.g. for environmental monitoring (such as atmospheric pollution), AGORA
 - * data assimilation for atmospheric and noise pollution monitoring in cities, ANGE
 - * sensing for smart cities, FUN
 - * air quality monitoring in large and dense urban areas, ILDA
 - * energy efficient smart homes, PERVASIVE
 - * energy management and saving solutions for smart homes, SPIRALS
 - * modeling urban sprawl, STEEP

- Agriculture and food production
 - * modeling agrifood chains, i.e. the chain of all processes leading from the plants to the final products, including waste treatment, GRAPHIK
 - * decision support systems for agronomy using ontologies and structured knowledge to integrate scientific data coming from different sources, GRAPHIK
 - * cattle monitoring from multiple sensors placed on calves for the early detection of diseases, LACODAM
- * IoT and data analysis to improve farming conditions, LACODAM
- * tools to increase the durability of the wheat supply chain, GRAPHIK
- * characterization and simulation of agricultural landscapes, ORPAILLEUR
- * formal concept analysis for the representation of farmer experience, ORPAILLEUR

Highlight 2

Consumption in networks

Fault detection & adaptation

COATI, RESIST, MADYNE, MYRIADS

- Routing in Software Defined Networks: 5 to 35% savings on networks of Internet Service Providers (soft: Graph & Sagemath)
- What is the economy by exploiting the fact that users are ready for service degradation?
- IT & constraints (heterogeneity, default, crisis...)
 - self-organization Future Ubiquitous Network
 - taking into account an assortment of networks (wifi, ad-hoc, cellular, bluetooth)
 - smart cities
 - survivors alternately broadcast alert messages

Safety Center

Disaster Area

Survivor waiting for help

rescuer

AGORA, FUN, SOCRATE, SUMO

Energy: production/distribution/storage

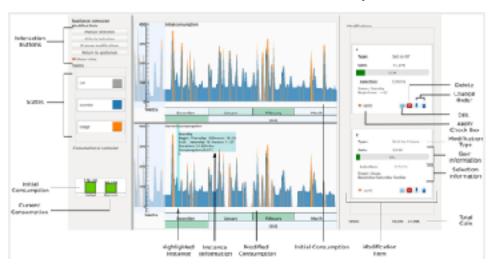
- Renewable energy
 - * sensitivity analysis for simulating floating offshore wind turbines, AIRSEA
 - * simulation of hydrodynamics (of rivers, lakes, etc.), application to micro-algae production (e.g. for biofuel), ANGE
 - * modeling and optimization for hydro-energy, ANGE, CARDAMOM, LEMON
 - * control for the production of methane and/or biohydrogen from organic wastes, BIOCORE
 - * modeling and optimizing micro-algae production (e.g. for biofuels), ANGE, BIOCORE
 - * applications of HPC in simulations for energy production (wind, hydro, biomass, etc.), CORSE
 - * control for Wind Farm Power Maximization, DISCO
 - * uncertainty modeling for wind turbine control, MULTISPEECH
 - * monitoring system for wind turbines, I4S
 - * numerical modeling for wind and hydro-energy, MEMPHIS
 - * stochastic models for solar power (irradiance prediction), NEO
 - * HPC and simulation for energy production (renewable as well as oil and gas), HIEPACS
 - * decentralized, local, production (and consumption) based on intermittent renewable sources. PERVASIVE

- Nuclear
 - * heat transfer and other fluid dynamics modeling for nuclear power plant design and operation, CAGIRE
 - * multi-physics simulation to study building materials for nuclear reactors, HIEPACS
 - * industrial risks in energy production (fission), SERENA
 - * simulation for nuclear fusion, CASTOR, HIEPACS, TONUS
 - * fluid mechanics for nuclear fusion, COFFEE
 - * Waste
 - ✓ numerical modeling of multiphase porous media flows for simulation of nuclear waste repositories (collaboration with Andra), COFFEE
 - ✓ parameter identification to characterize sites destined for nuclear waste, DEFI
 - √ modeling geological disposal of radioactive wastes, FLUMINANCE
 - ✓ algebraic and geometric domain decomposition for subsurface/groundwater flows, with application to radioactive waste deep geological disposal, HIEPACS
 - √ nuclear waste disposal in deep underground repositories, SERENA

Optimization/design of wind turbines

- Collaboration with VALOREM
 - Optimization of blades for wind turbines
 - Coupled simulations
 - fluid: 3d Navier-Stokes (LES)
 - structure: BEM model
 - Assembly of a mast of wind measurements, deformation and pressure sensors on a blade

Energy: distribution/storage/consumption patterns


- optimization and control problems in energy networks, DISCO
- modeling and control of district heating networks, DISCO
- distributed control of a fleet of batteries, DYOGENE
- distributed control design for balancing the grid using flexible loads (intermittent energy sources), DYOGENE
- wireless networks for power plants, EVA
- pricing models for energy demand side management, smart grids, INOCS
- optimization problems arising in the management of gas networks, INOCS
- pattern mining for detection of energy consumption patterns, LACODAM
- energy cost models for heterogeneous cloud infrastructures and for energy distribution grids, MYRIADS
- critical infrastructure operation, such as public transportation systems and power distribution networks, ILDA
- user centric energy management system, PERVASIVE
- modeling long-term investments in power systems, TAU
- simulation, calibration, and optimization of regional or urban power grids, TAU
- prediction of the power flow on the entire French territory over several years, TAU
- smartgrids: POLARIS, EASE, HYCOMES, MYRIADS, COMMANDS, INFINE, TROPICAL

Highlight 4

Consumption in a domestic environment

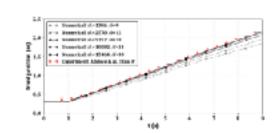
Activelec: visualization tool for non-expert users

MAVERICK

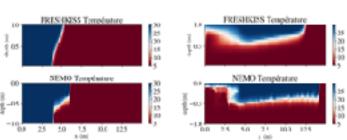
- "eco-feedback": what happens if...?
 - ▶ I turn off the devices instead of leaving them on standby
 - ► I change the program of the washing machine
 - (data-driven) sociological models

Understanding/modeling environment

- Ocean, atmosphere, climate, weather
 - * modeling for oceanic and atmospheric flows (including data assimilation, HPC, uncertainty quantification etc.), AIRSEA
 - * modeling of geophysical flows, for oceanography, meteorology, sediment transport modeling (estimation of sustainability of infrastructure such as canals, bridges, etc.), ANGE
 - * modeling for hydrological disasters (floods, tsunamis), ANGE, CARDAMOM
 - * application to computing for climatology, AVALON
 - * modeling carbon fluxes between ocean and atmosphere, BIOCORE
 - * data assimilation with applications in climatology, ECUADOR
 - * applications of computing platforms in climate modeling, MYRIADS
 - * remote sensing for meteorology, climatology, oceanography, flood modeling, FLUMINANCE, GEOSTAT
 - * simulation for atmospheric chemistry, HIEPACS
 - * modeling of high-impact weather events, MISTIS
 - * multi-scale ocean modeling, LEMON
- Ecology, ecosystems, biodiversity
 - * satellite data processing in ecology and landscape mapping, MISTIS
 - * modeling of ecosystems and anthropogenic pressures, LACODAM
 - * study of biological systems and social systems facing shortage of resources, DATASPHERE
 - * bioinfo tools for DNA-based (meta-genomic) identification of marine biodiversity (planktonic and others) present in a sample, GENSCALE
 - * modeling the propagation of invasive species, STEEP
 - * semantic web for biodiversity, WIMMICS
 - * crowdsource solution for assessing biodiversity etc. (PI@ntNet), ZENITH


Highlight 5

Sea Uncertainty Representation and Forecast


- DEFI « SURF »
 - * AIRSEA, ANGE, CARDAMOM, FLUMINANCE, LEMON

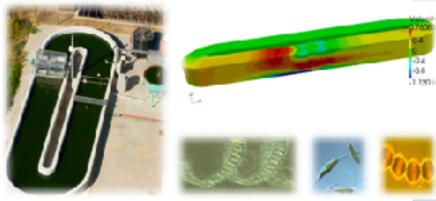
- Oceanography & GCM
- Accurate & stable large scale simulations
- Importance of strong mathematical stability properties
 - * Wroniszewski *et al.* Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave, Coastal Eng., 91:1-17,2014

- Key point
 - $*\Delta t, \Delta x \rightarrow 0$ or "finite" $\Delta t, \Delta x$

Other contributions

- Benchmarking national CO2 emission pathways, STEEP
- Links between social and natural systems
 - * study of biological systems and social systems facing shortage of resources, DATASPHERE
 - * study of interdependencies of natural ecosystems and socio-economic systems, and the role of digital systems on measuring and controlling the global natural/social system, DATASPHERE
 - * modeling of ecosystems and anthropogenic pressures, LACODAM
 - * tools to increase the durability of the wheat supply chain, GRAPHIK
 - * modeling of territorial supply chains and ecological accounting for sectorial pressure assessment (e.g. on water), STEEP
 - * assessing resilience of territories against interruptions of supply chains, climate change, etc., STEEP

- Decontamination
 - * bacteria-based biological depollution, BIOCORE, ANGE
 - * subsurface decontamination after chemical leakage, SERENA
- Environmental monitoring
 - * environmental monitoring (fire detection, snow melting, frost prediction for orchards, etc.), EVA, ANGE
 - * monitoring pollution, floods or fire, FLUMINANCE
 - * characterization and simulation of agricultural landscapes, ORPAILLEUR
 - * detection of land use changes and study of the relation of these to groundwater quality, ORPAILLEUR
 - * modeling of land use / land cover changes, STEEP
 - * study of the properties of seismic faults, earthquake modeling and hazard simulation, TITANE



Highlight 6

Culture of microalgae - DEFI « Algae in silico »

- Microalgae
 - richness in proteins, lipids, vitamins, antioxidants...
 - biofuel, chemistry, cosmetics...
 - human or animal nutrition
 - better yield than rape
- Inria Project Lab
 - ▶ "Algae in silico" : from the gene to the industrial process
 - 7 Inria teams involved
 - ► INRA (LBE and LIPM), CNRS-SU (LOV), IFREMER (PBA), CentraleSupelec (LGPM)

BIOCORE, DYLISS, ANGE, IBIS, COMMANDS, McTAO, PLEIADE

Highlight 6 A multidisciplinary project Light ANGE perceived $\operatorname{div} \underline{\mathbf{u}} = \mathbf{0}$ $+ (\underline{u}.\nabla)\underline{u} + \nabla p = \mathbf{G} + \operatorname{div} \Sigma$ by a cell agrangian Modelling free surface reconstruction hvdrodvnamics D.Z. Did. But. D.B. Bi@co,re (Galerkin-type approximations of NS) Optimize Impact on productivity metabolism Impact on (biofuel + compounds) Pleiade photosynthesis $= -k_eC + k_d\sigma IB$ Artificial BLGPM reconstruction Inalve

ANGE

Bi∳co,re

Al for protein function prediction

Other contributions (cont'd)

- Monitoring of infrastructures
 - * monitoring and localization of damages on civil structures (bridges, towers, roads, etc.), I4S
 - * modeling of geophysical flows, for oceanography, meteorology, sediment transport modeling (estimation of sustainability of infrastructure such as canals, bridges, etc.), ANGE
 - * study of concrete carbonation and corrosion, prediction of evolution of civil engineering structures, RAPSODI
- Water:
 - * simulating effects of landscape structure, farming system changes and their spatial arrangement on stream water quality, LACODAM
 - * models for sustainable management of water consumption (game theory), NEO
 - * detection of land use changes and study of the relation of these to groundwater quality, ORPAILLEUR

- CO2 storage
 - * simulation of compositional multiphase flow in porous media with different types of applications, in particular reservoir/bassin modeling, and geological CO2 underground storage, ALPINES
 - * modeling photosynthesis-based CO2 fixation in microalgae, BIOCORE
 - * geological sequestration of CO2, SERENA
- Financial system
- * investigate the condition of apparition of a monetary economy in a more ecological framework provided with the assumption that the market is made up of a finite number of agents having a bounded rationality and facing a time constraint, MNEMOSYNE, MATHRISK

Summary

A contrasted situation

- Many EP involved in research activities related to SD
- + A growing trend
- Few demands arrive to DGD-S
- Not raised during evaluation seminars

Strategy

- Sustainable development implies profound changes
- Research & « all activities »
- Organization / incentive actions
- Available means
- Lean ICT

A riddle

« La recherche et l'innovation doivent apporter leur concours à la préservation et à la mise en valeur de l'environnement. »

« Research and innovation must support the preservation and enhancement of the environment. »

A complex situation

ICT charged with

- Unfulfilled promises (less travel,...)
- Carbon footprint (IoT, streaming,...)
- Limited recycling, rare metals, rare earths
- Education (teacher versus computer)

A demand of some people

- Students interested in sustained development (SD)
- Researchers want their scientific themes in accordance with SD
- Another way to work (air travel / videoconferencing, lifespan...)

Several constraints

Time scales

- Emergency versus acceptability
- ► A long-term challenge (2030, 2050...)

Spatial scales

- North versus south developed/developing countries
- CO2, NH4 quickly uniformly spread
- Global solutions versus local/personal initiatives

Different levels of maturity

- Research activities versus related activities
- Bottom up versus top down
- The good question : what am I ready to do ?
- Rapid evolution but a limited proportion
- Very difficult to find a agreement between pros & cons

Scientific organization

Role of the ADS

- « Environment, sustainable development & energy »
 - Transversal role
 - many teams concerned
 - Thematic role (research theme 5.1 <u>Earth, Environmental</u> and <u>Energy Sciences</u>)
 - AIRSEA, ANGE, CASTOR, COFFEE, FLUMINANCE, LEMON, MAGIQUE-3D, SERENA, STEEP, TONUS
 - Promote/encourage initiatives
 - Partnerships
 - preliminary discussions
 - matching EP/partners
 - Propositions/evaluations

Scientific organization

Towards a 6th domain?

- Several themes
 - Earth & Environmental Sciences
 - ✓ modeling & simulations
 - √ geophysical flows, agriculture
 - Energy Sciences
 - √ renewable energies (optimization)
 - ✓ <u>nuclear fusion, storage</u>
 - ✓ from producers to consumers (optimization, AI)
 - Lean ICT
 - √ smart grids, cities, mobility
 - ✓ networks, architecture

Or many project-teams, DEFI, AEx...

Towards researchers

- Researchers (many?) want their scientific themes are in accordance with sustainable development
 - inside their team
 - large inflection
- Find individual solutions
 - exploratory actions
 - mobility in another team
 - possible because SD has consequences everywhere
- Participatory sciences
 - questions related to SD are complex
 - explain the scientific approach, research & innovation are a part of the solution to SD related problems
 - rational/scientific knowledge

Strategic fields / scientific collaborations

- EC: Green Deal
 - very ambitious, few themes & high impact
- Modeling/simulation/optimization for environment
 - climate / oceanography & natural hazards
 - renewable energies
 - virtual twin of the ocean
- Lean ICT
 - HPC, footprint of AI, green coding...
 - see below
- Agriculture
 - enhance collaborations with INRAE, january 2020 (workshop + seminar)
 - small scale: biology, bio-informatics & large scale: agronomy, impact of climate changes, hazards, systemic scale
- Many partners : ADEME, BRGM, THALES, TOTAL, ShiftProject...
- Not an exhaustive list

Numérique frugal

- « Feuille de doute » (M.-H. Pautrat, P. Sturm, F. Desprez, JSM)
 - transmise à la DG
- Thème structurant
 - Inria est attendu (ADEME, CNNum, DGE...)
 - niveaux national et européen : une place à prendre
 - recherche publique et privée, think tank...
- 1. Recherche
 - voir slide suivant
- 2. Innovation
- 3. Médiation et compétences
 - numérique et environnement
- 4. Labélisation / certification

Numérique frugal (suite)

Un DEFI

beaucoup de choses à définir / à préciser

Les grandes lignes

- Recherche
 - grands systèmes distribués & réseaux
 - architecture & compilation
 - algorithmique & programmation
 - études systémiques
- Structuration (liminaire)
 - → 2 axes : réduction de la consommation (HPC, réseau, architecture, algorithmique),
 - analyse des cycles de vie, étude systémique
 - niveaux national et européen
 - recherche publique et privée, think tank...

L'environnement et le monde d'après ?

- Volonté de « discontinuité » et besoin de « continuité »
 - réflexes versus réflexion
- Conséquences incertaines
 - urgence économique ?
 - important versus contingent ?
 - individuel versus collectif?
- L'ampleur de la tâche (empreinte carbone)
- Enclencher un cercle vertueux
- Déplacements versus « à distance »
- Souveraineté versus partenariats (européens)

Conclusion

- Une ligne de crête
- Une politique volontariste
 - de bas en haut plutôt que de haut en bas
 - moyens incitatifs
- Développer
 - ▶ le « numérique frugal »
 - ▶ le « numérique pour l'environnement »
- Favoriser
 - les changements thématiques
 - les projets innovants
- CE : Green Deal

Engageons-nous!

